作者单位
摘要
1 大连理工大学光电工程与仪器科学学院,辽宁 大连 116024
2 中国科学院理化技术研究所,北京 100190
3 中国科学院微电子研究所,北京 100029
对基于行波电极的硅-有机复合集成电光调制器进行研究,构建调制器的波导电极结构模型,分析特征阻抗和微波有效折射率对调制器频率响应的影响。通过对电极结构的仿真优化,完成调制器芯片的设计与制备,研究电光聚合物材料的片上极化工艺,得到高性能硅-有机复合集成电光调制器。对研制调制器电极的电学S(Scatter)参数进行测试,分析得到的电极特征阻抗和有效折射率与仿真设计结果基本相符。测试得到电光调制器的3 dB带宽大于50 GHz。
集成光学 电光调制器 硅-有机复合集成 行波电极 3 dB带宽 
光学学报
2023, 43(23): 2313002
Author Affiliations
Abstract
School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
In-band full-duplex (IBFD) technology can double the spectrum utilization efficiency for wireless communications, and increase the data transmission rate of B5G and 6G networks and satellite communications. RF self-interference is the major challenge for the application of IBFD technology, which must be resolved. Compared with the conventional electronic method, the photonic self-interference cancellation (PSIC) technique has the advantages of wide bandwidth, high amplitude and time delay tuning precision, and immunity to electromagnetic interference. Integrating the PSIC system on chip can effectively reduce the size, weight, and power consumption and meet the application requirement, especially for mobile terminals and small satellite payloads. In this paper, the silicon integrated PSIC chip is presented first and demonstrated for IBFD communication. The integrated PSIC chip comprises function units including phase modulation, time delay and amplitude tuning, sideband filtering, and photodetection, which complete the matching conditions for RF self-interference cancellation. Over the wide frequency range of C, X, Ku, and K bands, from 5 GHz to 25 GHz, a cancellation depth of more than 20 dB is achieved with the narrowest bandwidth of 140 MHz. A maximum bandwidth of 630 MHz is obtained at a center frequency of 10 GHz. The full-duplex communication experiment at Ku-band by using the PSIC chip is carried out. Cancellation depths of 24.9 dB and 26.6 dB are measured for a bandwidth of 100 MHz at central frequencies of 12.4 GHz and 14.2 GHz, respectively, and the signal of interest (SOI) with 16-quadrature amplitude modulation is recovered successfully. The factors affecting the cancellation depth and maximum interference to the SOI ratio are investigated in detail. The performances of the integrated PSIC system including link gain, noise figure, receiving sensitivity, and spurious free dynamic range are characterized.
Photonics Research
2023, 11(10): 1635
Author Affiliations
Abstract
School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
Radio frequency (RF) self-interference is a key issue for the application of in-band full-duplex communication in beyond fifth generation and sixth generation communications. Compared with electronic technology, photonic technology has the advantages of wide bandwidth and high tuning precision, exhibiting great potential to realize high interference cancellation depth over broad band. In this paper, a comprehensive overview of photonic enabled RF self-interference cancellation (SIC) is presented. The operation principle of photonic RF SIC is introduced, and the advances in implementing photonic RF SIC according to the realization mechanism of phase reversal are summarized. For further realistic applications, the multipath RF SIC and the integrated photonic RF SIC are also surveyed. Finally, the challenges and opportunities of photonic RF SIC technology are discussed.
in-band full-duplex radio frequency self-interference cancellation microwave photonics 
Chinese Optics Letters
2021, 19(7): 073901
作者单位
摘要
大连理工大学光电工程与仪器科学学院, 辽宁 大连 116024
设计了面向Ka频段(30 GHz)相控阵天线的4阵元子阵集成波导光延时网络。该光延时网络采用相位调制方式将射频信号转换至光域,波导微环处于反谐振状态,以实现大带宽、连续可调延时;通过带通滤波仅对一个边带进行延时调控,基于差分平衡探测器还原出射频信号。优化设计了级联双波导微环的结构参数,使每条路径的延时量在0~24.9 ps范围内连续可调,延时带宽大于4 GHz,实现了最大扫描角为±30°的波束扫描。对光延时网络链路的增益和噪声系数进行了推导分析,评估了整个延时芯片系统在实际应用中的性能。
集成光学 光控波束 光延时线 波导微环 反谐振 
光学学报
2019, 39(2): 0213001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!